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The comparison of spatial fields of meteorological variables is an essential component of model 
validation studies and is central in assessing the significance of any change between a perturbed and 
control run of a general circulation model. Comparisons may be made of statistics which define the 
time-mean state, the temporal variability about this state, and/or spatial variability. Comparisons may 
also be made of the two time-mean spatial patterns, or of the temporal evolutions of spatial patterns. 
We consider here a suite of univariate and multivariate statistics which may be used to make these 
comparisons. Some of these statistics have been used previously, while others are either new or have 
not previously been used in the present context. The use of these statistics, their differences and 
similarities, and their relative performances are illustrated by considering mean sea level pressure 
changes between the decades 1951-1960 and 1971-1980 over an area covering North America, the 
North Atlantic Ocean, and Europe. Significance levels are assessed using the pool-permutation 
procedure of Preisendorfer and Barnett (1983) (henceforth P+B). This overcomes problems arising 
from nonideal behavior of the data (particularly spatial autocorrelation), unknown sampling distribu- 
tions, and multiplicity in the case of univariate statistics. A subset of statistics is identified as most 
useful. For tests of differences in means these are the grid point by grid point t-test, a test comparing 
the overall means, and P+ B's SITES statistic. For tests of differences in temporal variability they are 
the grid point by grid point F-test, and SPRET1 (the ratio of the spatial means of the time variances). 
SPRET1 is a modification of P+ B' s SPRED statistic designed to identify the direction of any variance 
difference. As a test of spatial variability differences, we identify SPREX1 (the ratio of the time means 
of the spatial variances), and for comparing spatial patterns the best statistic is the (spatial) correlation 
coefficient between the time-mean fields. For comparing the temporal evolution of spatial patterns, we 
recommend using the time-mean anomaly field correlation which is a more easily interpreted 
equivalent to P+B's SHAPE statistic. 

1. INTRODUCTION 

Many aspects of climatology and meteorology involve the 
use of general circulation models (GCMs) and the need to 
assess the differences between model-generated spatial fields 
and/or to compare model and observed fields. In model 
validation the output of a "control run" simulation of the 
present-day climate is compared with the observed climate 
in order to establish the degree of similarity of the two fields. 
In perturbation experiments, a control run and a "perturbed 
run" (in which an external forcing or boundary condition 
change has been made) are compared with a view to identi- 
fying a significant difference between the two fields. Model 
studies of climate predictability may involve similar compar- 
isons, for example, between model variability in the pres- 
ence and absence of temporally varying air-sea interactions 
and the observed variability [Chervin, 1986]. In addition to 
cases which involve GCM output, spatial field (or equivalent 
multivariate) comparisons are used in observational studies 
of climatic change. An example is the so-called "fingerprint 
method" used in seeking to positively identify the multivari- 
ate effects of atmospheric CO2 concentration changes on the 
observed climate [Wigley et al., 1985; Barnett and Schles- 
inger, 1987]. 

In all of these spatial field comparisons, the central issue is 
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to assess the statistical significance of any differences be- 
tween the fields. While straightforward in principle, the 
problem is made difficult in practice because the sample 
sizes involved are generally small (few model runs longer 
than 20 years have been performed). The magnitude of the 
task is increased by the fact that most field comparisons 
involve large spatial arrays, often many hundreds or even 
thousands of grid points. These issues have been recognized 
and addressed in important papers by Hasselmann [1979] 
and Preisendorfer and Barnett [1983] (henceforth P+B). 

Three types of spatial field comparison can be identified: 
comparison of the means, comparison of the variances, and 
comparison of the spatial patterns. P+B have attempted to 
cover these by introducing a "trinity" of statistics. They 
describe the two multivariate space-time fields being com- 
pared as "n-point swarms in a common p-dimensional 
space" and define statistical measures of the swarms' rela- 
tive centers of mass (their SITES statistic), relative sizes 
(SPRED, a measure of variability), and relative pattern 
evolutions (SHAPE). A novel feature of their method is that 
these statistics are themselves parts of a single p- 
dimensional separation statistic (L2), a wholeness that is 
intellectually appealing but somewhat restrictive. 

There are, of course, other ways that means, variances, 
and patterns can be and have been compared, some of which 
are rather more obvious and conceptually simpler than the 
statistics invented by P+B. For example, means and vari- 
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Fig. 1. Mean sea level pressures (millibars) for (a) January 1951-1960, (b) July 1951-1960, (c) January 1971-1980, and 
(d) July 1971-1980. 

ances can be compared by applying conventional t-tests for 
the differences in means and F-tests for the variance ratios at 

each grid point, and spatial patterns can be compared by 
calculating the spatial correlation coefficient between the 
time-mean fields. 

The difficulty with such methods (as indeed with P+B's 
trinity) lies in determining the statistical significance of the 
results. Only in very special circumstances is the sampling 
distribution of a test statistic known a priori, and the 
assumptions on which conventional t-tests and F-tests are 
based are, more often than not, invalid. In addition, in many 
multivariate cases, as noted by yon Storch [1982] and 
Livezey and Chen [1983], there is a need to account for 
multiplicity (i.e., if many tests are performed, then a certain 
number would be "significant" at any prescribed level, 
purely by chance). Test results may also be affected by 
temporal and spatial autocorrelation. One way that signifi- 
cance can be assessed in such cases is to generate the 
sampling distribution from the available data using a permu- 
tation or Monte Carlo method [Edgington, 1987]. Examples 
in the meteorological literature include the PPP (pool per- 
mutation procedure) or APP (autocross permutation proce- 
dure) methods advocated by P+B. 

Within each of the three types of field comparison noted 
above, there exists a number of different methods. What are 
the relationships between these different methods? For 
example, does the SITES statistic convey the same informa- 
tion as the accumulated results of individual grid point 
t-tests? If not, what are the differences ? Which are the more 
sensitive indicators of the differences between spatial fields? 
Are there any other statistics that might be used? It is these 
questions that we seek to answer in this paper by comparing 
the significance results of a variety of different test statistics. 

Our goal here therefore is to provide a review of some of 
the different methods that may be used to compare the 
means, variances, and patterns of spatial fields. Apart from 
the statistical measures already mentioned, we will intro- 
duce a number of other statistics that may be used for spatial 
field comparisons. The statistics described will be illustrated 
with examples which allow us to compare their practical 
value. This intercomparison, and our focus on a set of 
specific statistics, distinguishes our review from more de- 
scriptive and historically more comprehensive reviews such 
as that of Livezey [1985]. Further details of the methods 
described below are given by $anter [1988a]. 
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2. TERMINOLOGY 

To clarify later calculations and to avoid confusion, we 
begin by summarizing the main terms. As far as is possible, 
we have employed the notation used by P+B. 

We suppose that the two space-time fields to be compared 
are D and M (the letters may be identified with observed data 
and model output, as would be the case in a model validation 
experiment). Both fields may be multivariate of the form D = 
[Dl(x, t), D2(x, t),...] and comprised of three-dimensional 
spatial arrays of a set of variables DI, D2, etc., at various 
times t. To simplify the notation, we suppose the spatial 
information for all variables to be ordered sequentially with 
a one-to-one correspondence between D and M. D and M 
then become two-dimensional (x, t) arrays, and we can write 
the elements as dxt and mxt , where x and t are the indepen- 
dent discrete variables representing space and time (x = 1, 
nx; t = l, nt). (Note that for simplicity, we assume the 
temporal sample size, nt, to be the same for D and M.) We 
are interested in comparing the spatial aspects (i.e., the x 
dependence) of D and M, so the x ordering is of prime 
importance, whereas the time ordering, in most cases, is of 
no direct consequence. Although the x dependence may 
involve more than one variable and more than two dimen- 

sions, it is convenient to imagine the D and M fields as 
two-dimensional spatial arrays, such as a mean sea level 

pressure field with values specified at a number of grid points 
(see Figure 1). 

The main quantities that occur in our analysis are averages 
and variances over space and time, and various sums of 
squares. The sums of squares are the same as those which 
appear in an analysis of variance (of either D or M), and the 
use of these quantities considerably simplifies the computa- 
tional aspects of the work. These items are defined in Table 
1. 

3. FIELD COMPARISON METHODS 

In making spatial field comparisons, the underlying null 
hypothesis is that the two sample fields, D and M, come from 
the same population, i.e., that they have the same multivari- 
ate distributions. To test this hypothesis is clearly impracti- 
cal; indeed, even in the univariate case, one would not 
normally attempt to test such a general hypothesis. Instead, 
we must break the problem down into a set of simpler and 
more restricted hypotheses. 

In the univariate case, for example, we might formulate a 
set of hypotheses concerning specific moments of the distri- 
bution: means, variances, etc. Of course, these restricted 
hypotheses need not sum to the general hypothesis, so they 
represent a compromise solution, less general in that they 
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TABLE 1. Definitions of Statistical Quantities 

Quantity Definition 

xt 

S •,x 
GSSD 

SSTD 

SSXD 

SSED 

v(,•x.) 

v(,•.t) 

s• 

value of d at point x and time t (x = 1, n x' t = 1, nt) 
spatial average of d at time t = 5• x dxt/rt x 
time average of d at point x = •t dxt/tlt 
spatial variance of d at time t = 5• x (dxt - •.t)2/nx 
time variance of d at point x = •t (dxt - •x.)2/rtt 
grand mean = (5• x •t dxt)/rtxrtt 
total (grand) sum of squares = 5• x •t (dxt - {d)) 2 = 

(•x •t dx2t) - fixtit{d) 2 
within-x sum of squares = n x Z t (8 t - (d)) 2 

=nx (Z t •.2 t) -- nxnt{d) 2 ' 
between-x sum of squares = rt t Z x (8 x - {d)) 2 = 

ttt(Z x •x2.) - fixtit{d) 2 ' 
error sum of squares = GSSD - SSTD - SSXD 
spatial variance of 8x. = Z x (Sx. - {d))2/nx = 

SSXD/nxnt 
time variance of 8.t = •]t (•.t - (d))2/nt = 

SSTD/nxn t 
time average of s,•,t = (GSSD - SSTD)/nxnt 

spatial average of s,•,x - (GSSD - SSXD)/nxn t 

nxntS•,x = Zx •t (dxt - •x.) 2 -- (GSSD - SSXD) 
(used by P+B) 

Definitions are for D; M items are defined similarly. 

cover only low-order moments, but less demanding as well. 
Testing the equality of means, for instance, may or may not 
require equality of variances, depending on the method used 
for hypothesis testing; and standard tests for the equality of 
variances do not require equality of means (although the 
results do depend on the relative values of the means). 

In the multivariate case we can also break the problem 
down into a set of restricted hypotheses. This is useful, 
partly because it makes it easier to formulate hypotheses, 
but also because it reflects the assumption that the relevant 
underlying distributions can be described by a small number 
of moments. Our primary concerns tend to be with means 
and variances. However, in multivariate problems, these 
moments can be defined in a number of different ways. In 
other words, we do not have a single mean or variance to 
consider, but a number of different possible means and 
variances. In addition, in multivariate problems we may 
•wish to consider other data properties (such as spatial 
patterns) that are not simply described by the moments of 
individual variables. 

Let us consider the means first. There are different levels 

of complexity in the way we can characterize the mean 
conditions. The simplest mean value is the grand mean, 
obtained by averaging over both space and time. Other 
single statistics that characterize the whole spatial field 
include P+ B's SITES statistic, which is related to the mean 
of the squared differences in the time means at each spatial 
point, and Mielke's [1985] /5 statistic. At the next level of 
complexity we might examine the individual differences in 
time means at each point. (Such an analysis may be com- 
pressed to a lower level of complexity by considering only a 
summary statistic, such as the fraction of points that show 
significant differences at some prescribed significance level.) 
Finally, we may examine the nx-dimensional vector of 
differences in means and ask whether the end of this vector 

lies close enough to the origin for one to accept the null 
hypothesis that it is drawn from a population with a zero 

mean vector (e.g., using Hotelling's T 2 statistic). This last 
possibility presents some practical difficulties because, in the 
present applications, nx is generally many times larger than 
rtt, and it is usually necessary to reduce the dimensionality 
using spatial averaging, principal component analysis, har- 
monic analysis, etc. 

In principle, the same hierarchy of tests can be formulated 
for an examination of time variances, but in this case, fewer 
of the possibilities are of interest. The overall space-time 
variance is more difficult to interpret than the space-time 
mean, so the lowest level of useful test statistic corresponds 
to those statistics which describe variance properties repre- 
sentative of the whole spatial field. Examples are P+B's 
SPRED statistic or variations on this theme, and the fraction 
of points that show locally significant differences in variance. 

In the multivariate case, we can define spatial as well as 
temporal variances. Analogs of SPRED can easily be de- 
fined, but these have never been considered in the literature. 

Although we may not be interested in spatial variability 
per se, we are interested in the spatial character of the two 
fields being compared. How does one compare the spatial 
patterns of two data sets? Some information can be gained 
by examining the spatial distribution of significance levels 
for local t-tests of differences in means or F-tests of variance 

ratios. Spatial patterns can also be compared more directly 
by correlating the time-mean fields. P+ B have introduced a 
statistic, SHAPE, which is also a measure of spatial pattern 
similarity. However, SHAPE depends not only on the time- 
mean spatial patterns, but also on similarities in the temporal 
evolutions of the two data sets being compared. When time 
evolution is important, other statistics may also be used, for 
example, the mean over time of the spatial anomaly corre- 
lations. 

3.1. Comparison of Means 

The obvious (and usual) method is to compare the time 
averages (•x. and thx.) grid point by grid point, assessing 
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significance by using a test for the difference in means [e.g., 
Chervin and Schneider, 1976]. However, while local signif- 
icance is easily calculated, field significance is affected by 
spatial autocorrelation and is not easy to evaluate [e.g., 
Livezey and Chen, 1983]. A second method is to use P+B's 
SITES statistic. A third method would be to compare the 
grand means of dxt and mxt averaged over time and space. 
Finally, we could use a multivariate response permutation 
procedure (MRPP), a technique applied in the evaluation of 
weather modification experiments (e.g., Mielke [1985] and 
earlier references cited therein) but not previously applied in 
the present context. We will consider the grand means 
method first. Note that in a number of the statistics given in 
this section, one could equally well use an area-weighted 
mean. 

Grand means. The statistical significance of the differ- 
ence in grand means (i.e., (d) - (m)) can be estimated using 
an appropriate t-test. The test statistic is 

t = ((d) - (m))/S (1) 

where S 2 is a measure of the variance of the sampling 
distribution of (d) - (m) and contains contributions from d 
and m. There are (at least) three ways that S 2 can be 
calculated: by ignoring the distinction between x and t and 
considering the overall d and rn variances, by considering (at) 
and (m) as spatial averages of •x. and thx. and using the 
spatial variances of these time means, or by considering (d) 
and (m) as time averages of 8.t and th.t and using the time 
variances of these spatial means. In the first case it can be 
shown that 

S 2 = S12 -- (GSSD + GSSM)/[nxnt(nxnt- 1)] (2) 

in the second case 

SSED S 2= S2 2 = SSXD 
n t -- 1 

+ SSXM 

and in the third case 

5 2= S• = [SSTD 
SSED 

nx- 1 

nt- 1 1 [nxnt(nx- 1)] (3) 

+ SSTM- • [nxnt(nt- 1)] (4) 
nx- 1 

The SSE terms appear because the SSX and SST values are 
not unbiased estimators of their corresponding population 
parameters, a standard result. Tests using the above test 
statistics assume that the d and rn variances come from the 

same population. Modifications are required if the d and rn 
variances are significantly different. Alternatively, one could 
use a paired t-test. 

With the above test statistics, one might possibly use 
Student's distribution with 2nxn t - 2, 2n x - 2, or 2n t - 2 
degrees of freedom (for S• 2, S22, and S32, respectively) to 
assess significance. However, the appropriateness of this 
distribution depends on a number of assumptions which may 
or may not be valid. The most important of these in the 
present context is that the data have no serial correlation, 

i.e., spatial autocorrelation in the case of (2) and (3) and 
temporal autocorrelation of the spatial means in (4). 

A more serious practical disadvantage with these tests 
arises because different parts of the time-space fields may 
have large, significant, but compensating differences which 
could lead to no overall difference between (at) and (m). 
Because of this, the grand mean tests may be misleading. 
Nevertheless, they are important, since any overall spatial 
bias will affect the results of the other tests. The value of (at) 
- (m), and its significance or otherwise, is useful in inter- 
preting the results of other tests of means. 

The SITES statistic. SITES is proportional to the spatial 
mean of the squared differences between the individual grid 
point time averages, standardized using the spatial means of 
the individual grid point time variances, i.e., 

SITES = nt •'• (•x. - thx.)2/rrl9rrM (5) 
x 

The notation follows P+ B, and rr is defined in Table 1. 
SITES has clear similarities with the grand mean t values 

(which involve Y•x(•x. - thx.) in the numerator) but, by 
squaring the difference in means, avoids the problem of 
possible compensating negative and positive difference re- 
gions. Comparison with the second of the grand mean t-tests 
suggests that standardization using estimates of the vari- 
ances of •x. and thx. might be more appropriate than stan- 
dardization using the spatial average of the grid point time 
variances. This gives an alternative to SITES, viz., 

SITES1 = • (•x.- thx.)2/[nx(nx- 1)S2 2] (6) 
x 

where S2 2 is given by (3). P+B give no justification for using 
rrt>rr/u as a divisor, but their primary motive is clearly the 
obvious one of producing a nondimensional statistic. 

Apart from argument by analogy with the conventional 
t-test, however, SITES 1 has no clear advantage over SITES. 
Both statistics have unknown sampling distributions, and 
Monte Carlo techniques must be employed to assess signif- 
icance. Spatial autocorrelation must affect the sampling 
distributions, since the statistics both involve a spatial 
average. In this case, however, this would automatically be 
accounted for in a Monte Carlo simulated sampling distribu- 
tion. 

Grid point by grid point analysis. Here, the time means 
are compared at each grid point using a local test for the 
difference in means. The local test may be either one- or 
two-tailed; in the examples given later, we consider only the 
second case. If the d and rn variances do not differ signifi- 
cantly, then the test statistic is 

where 

t= (•x. - thx.)/Sx (7) 

Sx 2 = (s•, x + S2m,x)/(n,- 1) (8) 

Significance of t is conventionally (but not necessarily cor- 
rectly) assessed using Student's distribution with 2n t - 2 
degrees of freedom (assuming Normally distributed data, no 
temporal autocorrelation, and equal d and rn variances). For 
assessing field significance, an appropriate test statistic is the 
fractional number of successes (ns/nx), where "success" 
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refers to a locally significant result at some prescribed local 
significance level. 

While local significance is relatively easily judged for a 
single grid point in isolation, the issue of field significance is 
more difficult to settle for two reasons. First, with a multi- 
plicity of tests (one at each of many grid points), the 
probability of a significant result occurring by chance in- 
creases. (The expected number of successes is E{ns} = anx, 
where a is the prescribed local significance level.) Second, 
spatial autocorrelation will mean that not all tests are inde- 
pendent. The effective number of independent tests will be 
less than nx, and the effective number of successes will be 
similarly (but not necessarily proportionally) reduced (this is 
explained in detail by Wigley and $anter [ 1988]). Multiplicity 
may be accounted for using the binomial distribution [e.g., 
Livezey and Chen, 1983], but assessing the effects of spatial 
autocorrelation requires a Monte Carlo analysis. 

MRPP. For the special case considered here, compari- 
son of only two spatial fields using the same number (nt) of 
realizations of each, the test statistic is based on the gener- 
alized distance measure 

Atu = •'• (Yxt - Yx•,) 2 (9) 
x 

where ¾ may be either d or m and v is an arbitrary exponent, 
usually taken to be 1 or 2. (In principle, ¾ may be any d or 
m variable.) The Atu are first averaged over all (t, u) 
permutations (t 9 u) for both D and M, and then these two 
values are averaged to give 

= [nt(nt- (xt- 2 
u<t x 

+ (mxt- mxu) 2 
x 

To assess the significance of/50, the D and M arrays need to 
be combined and then repartitioned into two new arrays. 
The number of distinct repartitionings (given that the order is 
unimportant) is 

N = (2nt)!/[2(nt!) 2] 

For each repartitioning, a new S value can be calculated 
using (10), and the significance of/50 can be assessed against 
the sampling distribution constructed from the N new /5 
values. If (d) and (m) differ noticeably, then /50 will have a 
small value relative to most of the sampling distribution 
values. (This can be seen clearly from (11) below. If (d) and 
(m) differ noticeably, combining, shuffling, and repartition- 
ing D and M will generally increase both tr} and trot, so that 
/50 should be small relative to the sampling distribution of/5.) 
If No is the number of S values less than /50, then the 
observed significance level is 

p = No/N 

In practice it may be both too time consuming and compu- 
tationally inefficient for one to calculate all the distinct /5 
values. Instead, random repartitionings can be made and the 
significance level assessed using the approximate cumulative 
sampling distribution so generated. From experience, 500- 

1000 random permutations are usually sufficient. This is 
equivalent to P+B's pool-permutation procedure. Alterna- 
tively, the random permutations may be used to estimate the 
mean, variance, and skewness of the sampling distribution, 
and these may then be used as parameters in a Pearson type 
III distribution, which the/5 distribution approaches asymp- 
totically [Mielke, 1985]. 

Since Aut involves (Yxt - Yxu) 2, MRPP is not affected by 
the possibility of compensating areas of negative and posi- 
tive differences between d and m. 

For the special case of •, - 2, Mielke's/50 statistic can be 
expressed in terms of the sums of squares defined previ- 
ously. Equation (10) becomes 

/5 o = (GSSD + GSSM- SSXD - SSXM)/(nt- 1) 

= (tr2D+tr}l)/(nt--1) (11) 

In the case where Yxt is replaced by the spatial mean values, 
fr.t, (10) becomes 

/50 = (SSTD + SSTM)/[nx(nt- 1)] (12) 

In spite of the simplified form for the case v = 2 given by 
(11), v = 2 is not necessarily the optimum choice. Mielke 
[1985] states that v- 1 is substantially superior in many 
cases (especially for non-Normal data). Clearly, v = 1 is less 
sensitive to distortion by isolated and possibly unrepresen- 
tative outliers. 

In the present application, the/5 statistic has some obvious 
drawbacks. In its most general form it is computationally 
demanding to calculate, and its interpretation is not straight- 
forward. We will show below that it often gives information 
which overlaps with other, simpler, statistics. 

Summary. For the last three tests, significance must be 
assessed using a permutation or Monte Carlo procedure. 
This has the advantage that some of the restrictions atten- 
dant on tests which use a theoretical null distribution are 

avoided. Note that in the present context this does not 
remove problems associated with temporal autocorrelation, 
but at least on a monthly or longer time scale, temporal 
autocorrelation is small for many meteorological variables. 

Although all tests deal with mean values, the relationships 
between the tests are not immediately clear. Consider the 
grid point by grid point test compared with SITES. If there 
are a large number of t-test successes, then many of the 
terms (t•x. - thx.) 2 that are summed in SITES will be large, 
ensuring a large value for SITES. But how many successes 
are required to give a significant SITES value? Which of 
these two tests is the more sensitive? 

One important difference is that the grid point t-tests 
require a local significance level to be specified. This could 
be viewed as being unnecessarily restrictive, since it pro- 
vides only a discrete yes/no answer at each grid point rather 
than a continuous assessment as in SITES or S0. However, 
since the local significance level may be varied, the tests can 
provide additional (spatial) information that SITES and /5o 
cannot provide. For example, by using a set of different local 
significance levels, a = 1%, 5%, and 10%, say, one might 
distinguish between field significance due to an area of highly 
significant local differences (a = 1%) and field significance 
due to an area of weakly significant local differences (a = 
10%). Equivalent (and additional) information could be 
obtained by mapping and examining the pattern of local 
observed significance levels. 
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WIGLEY AND SANTER: COMPARISON OF SPATIAL FIELDS 857 

Relationships between the tests will be discussed further be gained by using the unbiased variances, and we therefore 
in a later section. define SPRET2 as 

3.2. Comparison of Temporal Variances 

Variances are usually compared by testing the variance 
ratio using an F-distribution. In comparing D and M, this can 
be done grid point by grid point, paralleling the method for 
comparing means. P + B have introduced an alternative mea- 
sure, the SPRED statistic. 6eneralizations of SPRED have 
been defined by Preisendorfer and Mobley [1982]. Here we 
will define other variance comparison statistics. 

The SPRED statistic. P+B define SPRED by 

2 

SPRED + 2 = n t E (S•,x + Sm,x)/rrDO'M (13) 
x 

The logic behind this statistic becomes clear when it is 
rewritten as 

SPRED = (o'o- •rM)2/crOCrM 

__ 2 2 V/ff2D/tT2M 2 •/crM/cr o + -- (14) 
Thus if the ratio of the spatial means of the time variances is 
high (either cr• 2 > cr2• or cr2• > cruz), then SPRED will be 
noticeably greater than zero (SPRED = 0 when cr• 2 = cr2•). 
The SPRED value does not, however, indicate which of 
these mean variances is the higher. Since the sampling 
distribution of SPRED is unknown, its significance can only 
be assessed by Monte Carlo or permutation methods. 

SPRET1. Since SPRED is effectively a variance ratio 
statistic, it seems logical to consider this variance ratio 
directly. We therefore define SPRET1 as the ratio of the 
spatial means of the time variances, 

SPRET1 = s2 2 2 2 d,x/Sm,x = O'D/O' M (15) 

This can be written in terms of sums of squares as 

SPRET1 = (GSSD - SSXD)/(GSSM - SSXM) (16) 

Either large or small values of SPRET1 will be significant, so 
SPRET1 can be tested using a two-tail test if one is only 
searching for a difference in variances, or using a one-tail 
test if one is searching for a directional difference. In this 
regard, SPRET1 is more useful than SPRED, but otherwise, 
since SPRED + 2 tends to either SPRET1 or 1/SPRET1 for 

high or low variance ratios, the two statistics provide equiv- 
alent significance information when SPRET1 is tested using 
a two-tailed test. 

SPRET2. SPRET1 involves the ratio of spatial means of 
the time variances. A logical complement to this would be to 
consider the ratio of the time variances of the spatial means, 
SPRET2. Biased estimates of these variances are given by 
V(•.t) -- SSTD/nxnt and V(t•l.t ) -- SSTM/nxnt (Table 1). 
Instead of taking the ratio of these, we could choose to use 
the unbiased variance estimates: 

½(•.t) = [SSTD - SSED/(nx - 1)]/nx(nt - 1) 

and 

•/(/•/.t)--[SSTM - SSEM/(nx- 1)]/nx(nt- 1) 

However, since the significance of this statistic must gener- 
ally be assessed using Monte Carlo methods, there is little to 

SPRET2 = V(t•.t)/V(l•l.t) -" SSTD/SSTM (17) 

Grid point by grid point analysis. Here the time vari- 
2 2 

ances S a,x and are compared grid point by grid point 
using the test statistic 

F=s 2 2 a,x/s m,x (18) 

and judging local significance using an F-distribution with 
nt - 1, nt - 1 degrees of freedom. Either a two- or one-tail 
test may be appropriate, depending on the hypothesis being 
tested (i.e., that the D and M variances differ, or that one is 
significantly greater than the other). In the examples given 
later we use a two-tail local test. Field significance can be 
assessed using the fractional number of successes (locally 
significant results). As for the grid point comparison of 
means, due account must be taken of multiplicity and of 
spatial autocorrelation in assessing field significance. Until a 
reliable method for estimating effective sample size is devel- 
oped, the latter requires the use of Monte Carlo methods. 

This type of analysis gives similar information to that 
obtained from SPRED or (more obviously) SPRET1. As in 
the case of local t-tests, grid point by grid point F-tests are 
both more restrictive (in requiring a local significance level 
to be prescribed and thus only a yes/no result at each grid 
point) and more flexible (in that the spatial character of the 
differences in variance can be identified by varying the 
prescribed local significance level, or by examining the 
spatial pattern of the observed significance levels). 

3.3. Comparison of Spatial Variances 

The two obvious measures here are the ratio of the time 

means of the spatial variances (SPREX1, analogous to 
SPRET1) and the ratio of the spatial variances of the time 
means (SPREX2, analogous to SPRET2). 

2 
SPREX1. The time mean of the D spatial variances, s d,t 

is defined in Table 1. SPREX1 is defined as the ratio of the 

time-mean spatial variances, i.e., 

2 2 

SPREX1 = Sd,t/Sm, t 

= (GSSD- SSTD)/(GSSM- SSTM) (19) 

SPREX2. SPREX2 is similar to SPREX1 except that the 
order of the variance and average operations is reversed; 
i.e., SPREX2 is the ratio of the spatial variances of the 
time-mean fields of D and M. A straightforward measure of 
this spatial variance is, for D, V(•x.) = SSXD/nxnt (see Table 
1). An unbiased estimator of the corresponding population 
parameter is f/(•x.)= [SSXD- SSED/(nt- 1)]/[nt(n x - 1)]. 
For consistency with SPRET2, however, we define SPREX2 
using the biased estimators, 

SPREX2 = V(Sx.)/V(thx.) = SSXD/SSXM (20) 

3.4. Comparison of Spatial Patterns 

An obvious method here is to calculate the correlation 

coefficient between the two time-mean fields. P+B's 

SHAPE statistic is related to this measure, but it is deter- 
mined not only by spatial similarities between the time-mean 
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858 WIGLEY AND SANTER: COMPARISON OF SPATIAL FIELDS 

fields, but also by similarities in the way the D and M spatial 
patterns evolve through time. The mean anomaly correlation 
provides an easily interpretable alternative to SHAPE. 

Correlating the time-mean fields. The correlation coeffi- 
cient between the time-mean fields is defined by 

r=[• (•x.-(d))(thx.-(m)) ] / [nx•/V(•x.) V(thx.)] x 

(21) 

where V(•x.) and V(thx.) are spatial variances of the time- 
mean fields (see Table 1). Hence 

As noted above, the sample spatial variances are biased 
estimators of the corresponding population parameters. 
Thus an "unbiased" analog to r (?) could be defined using 
•/(•x.) and •/(thx.) in (21). If n t is small, r and ? may differ 
noticeably, with ? necessarily greater than r (see Mitchell et 
al. [ 1987] for some numerical examples). Whether or not one 
uses r or •, however, is somewhat arbitrary. The conven- 
tional test for a correlation coefficient would be distorted by 
the presence of spatial autocorrelation, so the significance of 
both statistics must be assessed using Monte Carlo methods. 
Both statistics should yield similar observed significance 
levels. 

There is an important distinction between a Monte Carlo 
test of r and the usual tests for correlation coefficients, which 
assume a specific sampling distribution. In the latter, the test 
is to determine whether the correlation coefficient differs 

significantly from zero or some a priori determined value. In 
the present situation, however, we are concerned to find out 
whether the observed correlation differs significantly from 
the unknown value near 1 which would arise if D and M were 

drawn from the same population. With a Monte Carlo 
significance assessment, this presents no problem. 

The SHAPE statistic. P+B's SHAPE statistic is defined 

by 

where 

SHAPE + SITES + SPRED = L2/O'DO'M (23) 

L2 __ • • (dxt _ mxt) 2 (24) 
x t 

is a gross measure of the separation between D and M. 
SHAPE can be expressed in the following form: 

crorrM (25) 

where S t is the covariance between the two anomaly fields at 
time t defined by 

S t -- • (dxt- •x.)(mxt- thx.)/n x (26) 
x 

SHAPE and r differ in a very important way. The statistic 
r does not depend on the temporal evolution of the D and M 
fields, whereas, since SHAPE involves a spatial covariance 
at each time slice t, it must depend critically on the details of 
the temporal evolutions of both D and M. In many of the 
situations in which spatial fields are compared (e.g., equilib- 

rium GCM validations or perturbation experiments), the 
precise temporal evolution is of no consequence, so SHAPE 
would be an inappropriate statistic for the comparison of 
spatial patterns in these cases. 

SHAPE has a minor illogicality in its formulation when 
compared with a conventional correlation coefficient. The 
covariance in SHAPE is standardized using the spatial 
means of the time variances. However, in producing the 
equivalent correlation coefficient, r t, from the covariances 
Ct, standardization is achieved using the spatial variances (at 
time t). It would therefore be more logical to replace crt>rr•u 
in the definition of SHAPE by the corresponding term using 
the time means of the spatial variances to give 

SHAPE1 = 2 

- ( 2nx • Ct) / (GSSD-SSTD)(GSSM-SSTM) (27) t 

(recall that rrt>rrM = (GSSD - SSXD)(GSSM - SSXM)). 
Note that this same minor inconsistency occurs in P+B's 
SITES statistic; it led to our defining the alternative SITES 1 
(equation (6)). In both cases it arises because of the con- 
straint of relating SITES, SPRED, and SHAPE directly to 
L 2, a constraint that is mathematically elegant, but unnec- 
essary. 

The mean anomaly correlation. If one were to define a 
statistic which was an indicator of spatio-temporal similari- 
ties in D and M independent of the "trinity" constraint of 
P+B's formalism, then the simplest indicator would be the 
time mean of the anomaly correlations 

• = • rt/nt (28) 
t 

where 

rt = 'Y. [(dxt- 8x.) - (8.t- (at))] 
x 

ß [(mxt- thx.) - (th.t- (m))]/(rtx•d,t•m,t) (29) 

and 

ga,t = • [(dxt- &.) - (8.t- {d})]2/nx (30) 
x 

~2 
($m,t similarly). Analysis of individual r t values can provide 
useful insights into the D - M differences (see, for example, 
Briffa et al. [1986], where the M fields correspond to 
pressure pattern reconstructions based on a spatial array of 
tree-ring data). 

As with r, since the sampling distributions of SHAPE (or 
SHAPE1) and b are unknown, their statistical significance 
can only be judged using permutation or Monte Carlo 
methods. There is an important distinction, however. For r 
the null distribution corresponds to identity of the popula- 
tions from which D and M are drawn, whereas for SHAPE 
and b, the null distribution corresponds to total dissimilarity 
in the temporal evolutions of the spatial anomaly patterns. 
With r therefore the test is for significant differences between 
the time-mean fields, whereas for SHAPE and b the test is for 
a significant similarity in the spatiotemporal characters of D 
and M. 
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WIGLEY AND SANTER: COMPARISON OF SPATIAL FIELDS 859 

TABLE 2. Summary of Test Statistics 

Statistics Designed to Test... 
Defining Ho 

Equations Value* 

T1 

T2 

T3 

SITES 
SITES1 
NT 1 and 

NT5 

DELTA1 

and DELTA2 

DELTA3 

SPRED 
SPRET1 
SPRET2 
NF 1 and 

NF5 

SPREX1 
SPREX2 
F 

SHAPE 

Differences between grand means 
Differences between grand means 
Differences between grand means 
Overall difference in means 
Overall difference in means 

Differences in time means, grid point by 
grid point. NT1 and NT5 are the 
fraction of grid points with significant 
differences at the 1% and 5% level, 
respectively. 

Overall difference in means based on 

spatial mean values 

Overall difference in means using 
original data 

Overall difference in temporal variances 
Overall difference in temporal variances 
Overall difference in temporal variances 
Differences in temporal variances, grid 

point by grid point (cf. NT1 and NT5 
above) 

Overall difference in spatial variances 
Overall difference in spatial variances 
Differences in spatial patterns of time- 

mean fields 

Similarities in spatiotemporal evolution 
Similarities in spatiotemporal evolution 

(1), (2) 0 
(1), (3) 0 
(1), (4) 0 
(5) 
(6), (3) 
(7), (8) 115] 

(10) using ?.t and 
v = 1; (12) for 
v=2 

(10) using Yxt and 
v=2 

(equivalent to 
(11)) 

(13), (14) 0 
(15), (16) 1 
(17) 1 
(18) 115] 

(19) 1 
(20) 1 
(21), (22) 0.9-0.99 

(25), (26) 2 
(28)-(30) 0 

*Value under the null hypothesis. 
?Value is unknown. 

The various statistics described above are summarized in 

Table 2. 

4. EXAMPLES 

In order to illustrate the use of this set of statistics, and to 
compare the types of information provided by the different 
statistics within each group, we will use observed mean sea 
level pressure (MSLP) data over the North America/North 
Atlantic/European region (20ø-85øN, 180øW--60øE). The 
data are from the United Kingdom Meteorological Office 
gridded data set, which are on a 5 ø latitude by 10 ø longitude 
grid (20 ø longitude at 70øN or above). For further details, see 
Williams and Van Loon [1978] and Jones [1987]. We will 
examine two decades, 1951-1960 and 1971-1980 and test for 
possibly significant changes in climate. This particular region 
has been chosen for two reasons: its agricultural importance 
and relevance to a significant fraction of the world's popu- 
lation, and because it encompasses two of the main "centers 
of action" of the northern hemisphere circulation, the 
Azores High and the Iceland Low. 

We have chosen to compare two periods of observed data 
rather than, for example, compare a GCM simulation with 
observed data, in order to obtain results where the differ- 
ences are close to the border between overall significance 
and nonsignificance. For a number of published GCM con- 
trol runs, the model simulations differ so obviously from 
observations that all tests of the mean give qualitatively 
identical results, namely, significant differences even at 
levels of 0.1% or less [Santer, 1988a; Santer and Wigley, 
1989]. In order to usefully compare the significance levels 

yielded by different tests, one needs to compare spatial fields 
that are more nearly similar. If differences exist that are real, 
but not visually obvious, this will provide conditions in 
which different tests of the same characteristic might give 
noticeably different results. In such situations, the use of an 
approximate assessment of significance might lead to a 
spurious conclusion. The chosen decades were selected a 
posteriori on this basis; decades prior to 1931-1940 were 
excluded a priori because of data quality problems in high 
latitudes [Jones, 1987] and missing data in the Pacific. 

4.1. January and July Comparisons 

We begin by comparing the means, variances, and spatial 
patterns for January and July for the two decades. The 
decadal-mean MSLP patterns are shown in Figure 1, with 
the difference fields given in Figure 2. It is clear from Figure 
1 that the MSLP patterns for the two decades are quite 
similar for both months. It is also clear from Figure 2 that 
there are noticeable differences in the time means in some 

parts of the study area. Are these differences statistically 
significant? In Figure 3 we show the ratio of the temporal 
variances grid point by grid point. There are noticeable 
differences in these variances between the two decades, but 
are they statistically significant? 

To assess statistical significance, we have calculated test 
statistic values for all the statistics described above. The 

corresponding observed significance levels (p values) were 
estimated using the PPP of P + B. All p values reported here 
are one-tail values, i.e., they represent the fraction of 
permuted results which, depending on which tail is appro- 
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Fig. 2. Mean sea level pressure differences (millibars) for (a) January 1951-1960 minus January 1971-1980 and (b) July 
1951-1960 minus July 1971-1980. 

priate, either exceed or are less than the actual test statistic 
value. A p value close to zero or close to 1 would therefore 
represent a significant result. 

In PPP the two samples are first combined to give 2n t 
years (n t = 10 here), each containing nx (= 292) data points. 
(Occasional missing data points meant that nx varied from 
288 to 292.) The 2n t years are then split randomly into two 
new samples of size n t (in which spatial ordering is the same 
as in the original data), and the test statistic value recalcu- 
lated. By performing a large number of randomizations, one 
can generate a null sampling distribution against which the 
test statistic for the original data can be compared. In the 
present case the total number of distinct permutations in 
which temporal ordering is unimportant is 20!/[2(10!) 2] = 
92,378. We have found that at least 500 permutations are 
required to give stable results (we have used 1000). The 
number suggested by P+B, 50-100, is much less than this 
and is almost certainly too small [see Efron, 1987]. 

Traditional methods for assessing statistical significance in 
which the sampling distribution for the test statistic is known 
a priori, can give distorted results if the assumptions on 
which the theoretical sampling distribution is based are not 
satisfied. One of the most important of these assumptions is 
that individual data points are independent. Most meteoro- 

logical data violate this assumption due to the existence of 
temporal and spatial autocorrelation. Permutation proce- 
dures have some clear advantages over traditional methods. 
First, in many cases they are immune to problems related to 
temporal and spatial autocorrelation, provided the autocor- 
relation structure is preserved by the chosen permutation 
process. Second, they can be applied even if the test statistic 
has an unknown sampling distribution. In PPP as applied 
here, spatial autocorrelation is preserved, but temporal 
autocorrelation is not. However, the variables considered, 
year-by-year values of gridded monthly mean MSLP, show 
no significant temporal autocorrelations. 

January and July results for the 20 test statistics are given 
in Table 3. We consider the results pertaining to differences 
in means first. 

The three grand-mean tests (T1, T2, T3) give virtually 
identical results in terms of significance levels (as one would 
expect). They show that there are no significant differences 
in the grand means at the 5% level. SITES and SITES1, also 
as expected, give virtually identical significance levels, and 
both indicate that there are no overall differences in means. 

DELTA1 and DELTA2 (based on Mielke's MRPP and using 
spatial means as the test variable), which also test overall 
differences in means, give the same result, i.e., no significant 
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Fig. 3. Mean sea level pressure variance ratios for (a) January 1951-1960 divided by January 1971-1980 and (b) July 
1951-1960 divided by July 1971-1980. The isopleths show the logarithm of the variance ratio in order to facilitate the 
contouring of the occasional grid points that have unusually high or low ratios. 

difference. This is true also of DELTA3 (which uses the full 
original data set). 

DELTA1 and DELTA2 give information which is equiv- 
alent to, but more restricted than that given by T1, T2, and 
T3. As presented here, the p values for T1, T2, and T3 are 
directional; i.e., a very low value of p would indicate a 
significant result with (at) >> (m), while a value of p close to 
1 would indicate that (at) was significantly less than (m). The 
DELTA statistics, however, cannot be directional. For 
compatibility, significance for T1, T2, and T3 would have to 
be assessed using a two-tailed test (i.e., (d) :3 (m) as the 
alternate hypothesis). If this is done, then the p values are 
approximately double those given in Table 1 (only approxi- 
mately because the sampling distribution is not perfectly 
symmetrical when generated using only 1000 permutations). 
Significance levels for DELTA2 are then always identical to 
those for T3 (which considers the grand means as time 
averages of the spatial means). DELTA3, the more general 
form of the 8 statistic, gives p values which are virtually 
identical to SITES/SITES1 (note that these three statistics 
are all nondirectional). The reason for these correspon- 
dences is not immediately obvious. 

NT1 and NT5 give quite different results from the other 

TABLE 3. Test Statistic Values and Observed Significance Levels 
(p Values) for MSLP Comparisons, lO51-1960 Versus 1971-1980 

January July 

Statistic Value p Value p 

T1 1.728 0.219 0.281 0.459 
T2 0.722 0.219 0.095 0.459 
T3 0.848 0.219 0.145 0.459 
SITES 0.269 0.244 0.317 0.174 
SITES 1 0.091 0.246 0.022 0.173 
NT1 9.030 0.014 10.270 0.001 
NT5 15.630 0.047 14.730 0.018 
DELTA 1 0.204 0.360 0.137 0.586 
DELTA2 1.932 0.414 0.886 0.889 
DELTA3 52.410 0.244 8.901 0.171 
SPRED 0.018 0.185 0.002 0.555 
S PRET 1 0.763 0.896 1.105 0.262 
S PRET2 1.964 0.087 0.405 0.899 
NF1 2.080 0.067 1.710 0.267 
NF5 7.290 0.097 4.450 0.673 
SPREX 1 0.758 0.948 1.031 0.324 
S PREX2 0.771 0.905 1.009 0.456 
r 0.925 0.271 0.979 0.085 
SHAPE 2.055 0.601 1.382 0.000 
? 0.020 0.417 0.262 0.003 
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862 WIGLEY AND SANTER: COMPARISON OF SPATIAL FIELDS 

statistics in this group. For both months, both NT1 and NT5 
give significant results at the 5% level, showing that the 
number of grid points with significantly different time means 
is greater than one would expect to occur by chance. These 
results are consistent with the systematic deviations that are 
visually apparent in Figure 2. 

The five temporal variance statistics form three clear 
groups. If SPRET1 is tested using a two-tailed test, then 
SPRED and SPRET1 give identical significance levels. How- 
ever, SPRET1 can be used directionally, and it is these 
(one-tailed) results that are shown in Table 3. SPRET2 (like 
SPRET1, a directional statistic) gives results which differ 
markedly from SPRET1. These differences are illustrated 
further below. None of these statistics indicates any signif- 
icant overall difference at the 5% level between the time 

variances of the two decades. NF1 and NF5 results lead to 

the same conclusion, although one value (NF1 in January) 
approaches significance at the 5% level. Note, however, that 
variance tests invariably have low power, so that with such 
small samples as these, any real differences would have to be 
quite large before they would lead to statistically significant 
results. 

SPREX1 and SPREX2 show that there are no significant 
differences in the spatial variances (SPREX2 is almost 
significant at the 5% level in January). Although these two 
statistics give different observed significance levels, we will 
show below that they overlap considerably in information 
content. 

The spatial pattern comparisons divide into two types. 
The correlation statistic r measures the degree of similarity 
of the time-mean patterns, with a significant value pointing 
to significant differences. As pointed out earlier, this differs 
from the conventional interpretation of a correlation coeffi- 
cient, where a significant result would indicate the presence 
of common information. Both r values show that there are no 

strongly significant differences in the time-mean spatial 
patterns, although the July result is significant at the 10% 
level. With a test statistic value of 0.979 in July, it might 
appear strange that such a high value could indicate a 
marginally significant pattern difference. In this case, the 
mean correlation in the PPP sampling distribution is 0.986 
with a standard deviation (sample size 1000) of 0.005 and 
skewness of -1.12, so 0.979 clearly lies in the tail of the 
sampling distribution. 

The statistics SHAPE and • are indicators of similarities in 

the spatio-temporal evolution of the two fields. Significant 
results indicate that the time evolutions of the spatial anom- 
aly patterns have similarities which cannot be attributed to 
chance. We will show below that they generally give equiv- 
alent information. The July results obtained here are most 
surprising, since they suggest that the year-to-year varia- 
tions over 1951-1960 were similar to those over 1971-1980 (p 
values of 0.000 and 0.003). However, the degree of similarity 
is small, amounting to only about 7% of variance in common 
(based on the • value; the SHAPE statistic is singularly 
uninformative in this regard). 

4.2. Seasonal Cycle Comparisons 

Analysis of January and July data has shown that certain 
test statistics give similar information. To gain further insight 
into these similarities, we consider results over the entire 
seasonal cycle. 

o NT1 
• NT5 

1.0 

0.8 
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. - 
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Fig. 4. Comparison of one-tailed p values for NT1 and NT5. 
NT1 and NT5 are the fraction of grid points with significant 
differences in the mean at the 1% and 5% levels (two-tailed local 
tests). Field significant differences occur in all months except 
February, October, and November. 

Figure 4 compares NT1 and NT5. Both statistics show 
similar month-to-month variations in their significance lev- 
els, with NT1 values generally more significant (except in 
March and November). 

Figure 5 compares NT1, SITES, and T1. (Note that the 
equivalence of SITES and SITES 1 has already been demon- 
strated.) SITES, T1, and NT1 show seasonal variations 
which are similar, but the SITES and T1 values are invari- 
ably much less significant than NT1, and T1 is less significant 
than SITES for all months except January, February, and 
March. In general, of course, the sum of a set of univariate 

o NT1 
ß SITES 
[] T1 

1.O 
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0.6 
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Fig. 5. Comparison of one-tailed p values for NT1, SITES, and 
T1 (note that, as used here, only T1 is a directional statistic). All 
three statistics show similar seasonal variations, but NT1 is gener- 
ally much more sensitive. The exception is February. In this month 
a significant difference exists in the overall mean, but this is only 
weakly reflected in NT1. 
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o SPRET1 
ß $PRET2 

0 NF1 
ß NF5 
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Fig. 6. Comparison of SPRET1 (ratio of the spatial means of the 
local time variances) and SPRET2 (ratio of the time variances of the 
spatial means)' one-tailed p values. 

tests need not lead to the same conclusion as a single 
multivariate test [van Starch, 1982], so the similarities here 
need not apply in other circumstances. 

For SITES, only March, June, and November show 
significant differences at the 5% level, while only February, 
October, and December fail to reach significance at this level 
for NT1. The NT statistics therefore appear to be similar to, 
but more sensitive than SITES. 

T1 results for February and March are significant at the 
5% level. Significant results for T1 (or T2 or T3) can arise in 
two ways; either there is a small area of highly significant 
local differences in means, or there is a large area of smaller 
(possibly nonsignificant) differences in means. These two 
possibilities should be distinguished by the NT results. In 
February the latter possibility holds because the NT statis- 
tics are not significant in this month. In March, however, all 
mean statistics give •significant results. This does not rule out 
the possibility of a large-scale bias, but it clearly shows that 
the character of the differences in March differs noticeably 
from that in February. 

In Figure 6 we compare SPRET1 (which, in its two-tailed 
form, is equivalent to SPRED) and SPRET2. The seasonal 
variations are quite different, indicating that these two 
statistics give distinct and complementary information about 
overall changes in temporal variability. Indeed, they can 
lead to conclusions that are, at least superficially, in conflict 
(witness the results for January). In this case, SPRET1 
indicates that 1951-1960 was less variable when the average 
local variability is considered, but more variable than 1971- 
1980 when the temporal variability of the spatial mean is 
considered. None of these results, however (with the excep- 
tion of SPRET2 in March), is significant at the 5% level. 

NF1 and NF5 are compared in Figure 7. In general, these 
two statistics show similar month-to-month variations. Sig- 
nificant differences between the decades occur in June (p = 
0.020 for NF1, p = 0.011 for NF5), indicating that the 
temporal variability in 1951-1960 differed from that in 1971- 
1980 at a significant number of grid points (roughly twice as 

1.O 

J F M A M J J A S 0 N D 

Fig. 7. Comparison of one-tailed p values for NF1 and NF5. 
NF1 and NF5 are the fraction of grid points with significant 
differences in variance at the 1% and 5% levels (two-tailed local 
tests). Field significant differences only occur in June. In April (NF1 
only) and December the number of locally significant results is 
significantly less than one would expect to occur by chance. 

many points as would be expected by chance). Since the 
results given here employed a two-tail test at the grid point 
level, they do not show which decade (if either) was the 
more variable. (When one-tailed local tests were used, these 
showed that June 1971-1980 was consistently more variable 
than June 1951-1960.) A different type of significant result 
occurs in April (NF1 only, 1 - p - 0.000) and December 
(1 - p = 0.000 for NF1, 1 - p = 0.042 for NF5). This implies 
differences in variance which are less than one would expect 
to occur by chance if the two decades were drawn from the 
same population, a result which is not easy to interpret. 

The spatial analogs of SPRET1 and SPRET2, viz., 

0 $PREX1 
ß SPREX2 

1.0 

0.8 

LLI 0.6 

0.4 
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0.0 
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Fig. 8. Comparison of SPREX1 (ratio of the time-mean spatial 
variances) and SPREX2 (ratio of the spatial variances of the time 
means); one-tailed p values. 
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R 0 RBAR 
SITES •, SHAPE 
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Fig. 9. Comparison of r (the spatial correlation coefficient be- 
tween the time-mean fields) and Preisendorfer and Barnett's SITES 
statistic; one-tailed p values. 

Fig. 10. Comparison of b (time mean of the spatial correlations 
between the anomaly fields) and Preisendorfer and Barnett's 
SHAPE statistic; one-tailed p values. 

SPREX1 and SPREX2, are compared in Figure 8. Except for 
March, these two statistics tend to give similar information. 
They show significant differences in overall spatial variabil- 
ity in February, April, May, and June (1951-1960 less 
variable, 1 - p < 0.05 for SPREX1, SPREX2, or both). 

Figure 9 compares r with SITES. These two statistics 
show somewhat surprising similarities in the month- 
to-month variations of their observed significance levels. 
(Similarities between SITES 1 and r are equally pronounced.) 
One might, however, expect that these statistics would give 
overlapping information, since they have an important term 
in common in their definitions, namely, Y.x 8x.thx. ß This term 
is clearly crucial in the definition of r, since it encapsulates 
the covariance between the two time-mean fields. It is less 

obviously important in SITES and SITES 1, but the empirical 
evidence presented here attests to its significant role. One 
can also argue for a similarity between r and SITES on the 
basis of NT1 (or NT5); NT1-SITES parallels are discussed 
above. If NT1 is significant, then this points to a spatially 
specific difference in the time-mean fields. If such a differ- 
ence exists, then one might also expect r to point to a 
significant difference in the spatial patterns (although this is 
not always the case [see Santer, 1988b]). For SITES (and 
SITES1) therefore, although they give information about 
differences in means, their overall interpretation is quite 
complex. 

Finally, • and SHAPE are compared in Figure 10. The 
parallel between their month-to-month variations is striking. 
As already noted, • is superior to SHAPE in that it can be 
interpreted directly in terms of common variance. 

5. CONCLUSIONS 

The statistical analysis of model validation, perturbation, 
and predictability experiments has been divided into tests 
which compare time-mean fields, temporal variances, spatial 
variances, and spatial patterns. In each group, we have 
identified a number of test statistics; some of these have 
been used previously, and others are new. Within any one 

group the various statistics must give overlapping informa- 
tion, so some tests may be superfluous. To assess the degree 
of overlap between different statistics, and to illustrate their 
use and interpretation, we have compared MSLP data over 
the North America/North Atlantic/Europe region for two 
decades, 1951-1960 and 1971-1980. This comparison has 
revealed some significant changes in climate between the 
two decades and has provided the following insights into the 
various test statistics. 

For tests involving the time-means, grid point by grid 
point tests (NT1 and/or NT5) appear to be the most infor- 
mative and the most sensitive. A grand-mean test (e.g., T1) 
should be performed as well in order to assess the signifi- 
cance of large-scale changes. SITES 1 has no advantage over 
SITES. These statistics rarely add any unique and easily 
interpretable information. SITES overlaps with the spatial 
correlation statistic r, which is clearly preferable in examin- 
ing pattern changes. As used here, the MRPP statistics 
DELTA1, DELTA2, and DELTA3 add no new information. 
DELTA2 is equivalent to the two-tailed version of T3, while 
DELTA3 is equivalent to SITES. 

For tests of temporal variance differences, NF1 (and/or 
NF5) gives different information from the other tests. 
SPRET1, basically a clone of SPRED, is preferred because it 
gives directional information. SPRET2 apparently gives in- 
formation that is different from that given by SPRET1. The 
two tests to detect differences in spatial variability, using 
SPREX1 and SPREX2, give information that overlaps con- 
siderably in most instances. 

Only one test has been given which can be used to identify 
differences in spatial patterns. This uses the statistic r, the 
correlation coefficient between the time-mean spatial fields. 
The PPP method for significance testing allows one to 
identify whether or not significant pattern differences exist 
(under the null hypothesis that the two fields are drawn from 
the same population). In many cases, however, one may be 
interested in knowing whether the two fields have any 
significant common features (for which the null hypothesis 
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WIGLEY AND SANTER: COMPARISON OF SPATIAL FIELDS 865 

will have r = 0). The standard test cannot be used in this case 
because most meteorological fields have strong spatial auto- 
correlation, and this would invalidate the test assumptions. 
If spatial autocorrelation exists, quite large correlations 
between spatial fields can occur by chance, and further work 
is required to devise an appropriate permutation procedure 
for significance testing under the r = 0 null hypothesis. 

The statistics SHAPE and • can be used to identify 
significant parallels between the combined spatial and tem- 
poral features of variables. They might be applied, for 
example, in testing models of the ENSO phenomenon, 
where both a characteristic response pattern and its tempo- 
ral evolution must be simulated. The time-mean spatial 
anomaly correlation, •, gives information which is equivalent 
to that given by SHAPE. However, • is preferred because it 
is easier to interpret physically and because its value is 
directly related to the overall common variance. 

To summarize, we recommend that the statistics NT1, 
NT5, T1, SITES, NF1, NF5. SPRET1, SPREX1, and r be 
used routinely in quantitative evaluation of spatial field 
similarities and/or differences. In cases where temporal 
evolution is important, similarities can be best quantified and 
assessed using •. In addition to tests using these easily 
interpreted statistics, other tests are possible based on 
Hotelling's T 2 statistic or the Mahalanobis D 2 statistic. 
These give information which, under some circumstances, 
may overlap with NT1, NT5, T1, and r, and further work is 
required to see what additional insights they can provide. 
Since nx >> nt, in general, use of T 2 requires some form of 
spatial compression. The results will likely depend on the 
method of compression used (zonal•means versus spectral 
decomposition versus principal components, etc.). 

In a few of the cases considered here, the test statistics 
have mathematically tractable expressions for their theoret- 
ical null distributions under certain simple assumptions. 
However, these assumptions tend to be frequently violated 
by meteorological data. We have found that significance 
levels estimated using theoretical null distributions invari- 
ably differ markedly from those obtained using the PPP 
technique. 

In a companion paper [Santer and Wigley, 1989] we will 
consider the application of the statistics discussed above to 
the validation of a number of general circulation models. 

Acknowledgments. This work was funded by the Carbon Diox- 
ide Research Division of the U.S. Department of Energy under grant 
DE-FG02-86-ER60397 and under contract W-7405-ENG-48 with the 

Lawrence Livermore National Laboratory. Help and advice from 
K. J. Keen and R. W. Katz are gratefully acknowledged. 

REFERENCES 

Barnett, T. P., and M. E. Schlesinger, Detecting changes in global 
climate induced by greenhouse gases, J. Geophys. Res., 92, 
14,772-!4,780, 1987. 

Briffa, K. R., P. D. Jones, and T. M. L. Wigley, Climate recon- 
struction from tree rings, 2, Spatial reconstruction of summer 
mean sea-level pressure patterns over Great Britain, J. Climatol., 
6, 1-15, 1986. 

Chervin, R. M., Interannual variability and seasonal climate pre- 
dictability, J. Atmos. Sci., 43,233-251, 1986. 

Chervin, R. M., and S. H. Schneider, On determining the signifi- 
cance of climate experiments with general circulation models, J. 
Atmos. Sci., 33,405-412, 1976. 

Edgington, E. S., Randomization Tests, Marcel Dekker, New York, 
1987. 

Efron, B., Better bootstrap confidence intervals, J. Am. Stat. 
Assoc., 82, 171-185, 1987. 

Hasselmann, K., On the signal-to-noise problem in atmospheric 
response studies, Meteorology of Tropical Oceans, edited by D. 
B. Shaw, pp. 251-259, Royal Meteorological Society, London, 
1979. 

Jones, P. D., The early twentieth century Arctic high--Fact or 
fiction?, Clim. Dyn., 1, 63-75, 1987. 

Livezey, R. E., Statistical analysis of general circulation model 
climate simulation, sensitivity and prediction experiments, J. 
Atmos. Sci., 42, 1139-1149, 1985. 

Livezey, R. E., and W. Y. Chen, Statistical field significance and its 
determination by Monte Carlo techniques, Mon. Weather Rev., 
111, 46-59, 1983. 

Mielke, P. W., Design and evaluation of weather modification 
experiments, in Probability, Statistics and Decision Making in the 
Atmospheric Sciences, edited by A. H. Murphy and R. W. Katz, 
pp. 439-459, Westview Press, Boulder, Colo., 1985. 

Mitchell, J. F. B., C. A. Wilson, and W. M. Cunningham, On CO2 
climate sensitivity and model dependence of results, Q. J. R. 
Meteorol. Soc., 113,293-322, 1987. 

Preisendorfer, R. W., and T. P. Barnett, Numerical model-reality 
intercomparison tests using small-sample statistics, J. Atmos. 
Sci., 40, 1884-1896, 1983. 

Preisendorfer, R. W., and C. D. Mobley, Data intercomparison 
theory, II, Trinity statistics for location, spread, and pattern 
differences, Tech. Memo. ERL PMEL-39, 91 pp., Pac. Mar. 
Environ. Lab., NOAA, Seattle, Wash., 1982. 

Santer, B. D., Regional validation of general circulation models, 
Clim. Res. Unit Res. Publ. 9, 375 pp., Univ. of East Anglia, 
Norwich, England, 1988a. 

Santer, B. D., Validation of sea-level pressure simulated by the 
ECMWF T21 model for the northern hemisphere, Climate simu- 
lations with the ECMWF T21 model in Hamburg, I, Climatology 
and sensitivity experiments, Rep. 4, pp. 65-98, Meteorol. Inst. 
der Univ. Hamburg, Federal Republic of Germany, 1988b. 

Santer, B. D., and T. M. L. Wigley, Regional validation of means, 
variances, and spatial patterns in general circulation model con- 
trol runs, J. Geophys. Res., this issue. 

von Storch, H., A remark on Chervin-Schneider's algorithm to test 
significance of climate experiments with GCMs, J. Atmos. Sci., 
39, 187-189, 1982. 

Wigley, T. M. L., and B. D. Santer, Validation of general circulation 
climate models, in Physically-Based Modelling and Simulation of 
Climate and Climatic Change, Part 2, edited by M. E. Schles- 
inger, pp. 841-879, Kluwer Academic Publishers, Dordrecht, The 
Netherlands, 1988. 

Wigley, T. M. L., G. J. Kukla, P.M. Kelly, and M. C. MacCracken, 
Recommendations for monitoring and analysis to detect climate 
change induced by increasing carbon dioxide, in Detecting the 
Climatic Effects of Increasing Carbon Dioxide, edited by M. C. 
MacCracken and F. M. Luther, pp. 177-185, Carbon Dioxide 
Research Division, U.S. Department of Energy, Washington, D. 
C., 1985. 

Williams, J., and H. H. van Loon, An examination of the northern 
hemisphere sea-level pressure data set, Mon. Weather Rev., 104, 
1354-1361, 1978. 

B. D. Santer, Max-Planck-Institut far Meteorologie, Bundes- 
strasse 55, 2 Hamburg 13, Federal Republic of Germany. 

T. M. L. Wigley, Climatic Research Unit, University of East 
Anglia, Norwich, NR4 7TJ, England. 

(Received August 1, 1988; 
revised March 31, 1989; 
accepted April 28, 1989.) 

 21562202d, 1990, D
1, D

ow
nloaded from

 https://agupubs.onlinelibrary.w
iley.com

/doi/10.1029/JD
095iD

01p00851 by M
PI 348 M

eteorology, W
iley O

nline L
ibrary on [13/06/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense


